If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-18x-45=0
a = 2; b = -18; c = -45;
Δ = b2-4ac
Δ = -182-4·2·(-45)
Δ = 684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{684}=\sqrt{36*19}=\sqrt{36}*\sqrt{19}=6\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6\sqrt{19}}{2*2}=\frac{18-6\sqrt{19}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6\sqrt{19}}{2*2}=\frac{18+6\sqrt{19}}{4} $
| 32=18–2x | | 100=12b-3 | | 5x-1=(3x+6)-1 | | -8z-1=-23 | | 2n+13=36 | | 2x+5=x+9-4 | | 8x*2x^-2=x | | 8x²-22x²+15=0 | | 88x+x=90 | | 4x(116+x)+x+2(116+x)+116=4x-116+x | | -2y+1=40 | | 3x(10÷2)-(-4)=19 | | n+3=57;60,61,62 | | 19n=–2(–14.4n+13.49)−13.6n | | 4(x+5)-4=17+3x-1+7x | | -4-4h=-7h+8 | | 3x−55+4x8=10 | | 4-2t²+2t=-8t | | 2x+9=2- | | b^2=47 | | 5x/3+2=-8 | | 2(6y+2)=28 | | -4(7+3)-3y=2(y+3) | | -3+5(x-4)=12x+5-7x | | -8t=-10t+4 | | 6m–m=56(6m–10) | | 4(6-10w)+33w+7w=8 | | z^2=25/36 | | 4,160=26,000•0.04•t | | -0.000012x^2-0.1x+168=0 | | 3(3y-4)=44 | | 4w+15=-9(w-6) |